
Motivation Tool presentation In the end

PREG Axiomatizer – A Ground Bisimilarity

Checker for GSOS with Predicates

Luca Aceto1, Georgiana Caltais1, Eugen-Ioan Goriac1,
Anna Ingólfsdóttir1

1Reykjavik University ICE-TCS, Iceland

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Introduction

Purpose

Check for behavioral equivalences

between processes specified using GSOS operators
faster than by just applying the definition

Extend the expressiveness of the GSOS framework for
giving semantics to operators

with predicates

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Introduction

Purpose

Check for behavioral equivalences

between processes specified using GSOS operators
faster than by just applying the definition

Extend the expressiveness of the GSOS framework for
giving semantics to operators

with predicates

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Introduction

Pre . (lude + liminaries)

A – finite set of actions, P – finite set of predicates
f ∈ Σ – an l -ary operation, defined by:

preg transition rules (RA):

{xi
aij
−→ yij | i ∈ I+} {Pijxi | i ∈ J+}

{xi
b
9 | i ∈ I−, b ∈ Bi} {¬Qxi | i ∈ J−,Q ∈ Qi}

f (x1, . . . , xl)
c
−→ C [~x , ~y]

preg predicate rules (RP):

{xi
aij
−→ yij | i ∈ I+} {Pijxi | i ∈ J+}

{xi
b
9 | i ∈ I−, b ∈ Bi} {¬Qxi | i ∈ J−,Q ∈ Qi}

P(f (x1, . . . , xl))

preg system: G = (Σ,RA ∪RP)

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Introduction

Pre . (lude + liminaries)

A – finite set of actions, P – finite set of predicates
f ∈ Σ – an l -ary operation, defined by:

preg transition rules (RA):

{xi
aij
−→ yij | i ∈ I+} {Pijxi | i ∈ J+}

{xi
b
9 | i ∈ I−, b ∈ Bi} {¬Qxi | i ∈ J−,Q ∈ Qi}

f (x1, . . . , xl)
c
−→ C [~x , ~y]

preg predicate rules (RP):

{xi
aij
−→ yij | i ∈ I+} {Pijxi | i ∈ J+}

{xi
b
9 | i ∈ I−, b ∈ Bi} {¬Qxi | i ∈ J−,Q ∈ Qi}

P(f (x1, . . . , xl))

preg system: G = (Σ,RA ∪RP)

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Introduction

Pre . (lude + liminaries)

A – finite set of actions, P – finite set of predicates
f ∈ Σ – an l -ary operation, defined by:

preg transition rules (RA):

{xi
aij
−→ yij | i ∈ I+} {Pijxi | i ∈ J+}

{xi
b
9 | i ∈ I−, b ∈ Bi} {¬Qxi | i ∈ J−,Q ∈ Qi}

f (x1, . . . , xl)
c
−→ C [~x , ~y]

preg predicate rules (RP):

{xi
aij
−→ yij | i ∈ I+} {Pijxi | i ∈ J+}

{xi
b
9 | i ∈ I−, b ∈ Bi} {¬Qxi | i ∈ J−,Q ∈ Qi}

P(f (x1, . . . , xl))

preg system: G = (Σ,RA ∪RP)

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Introduction

Pre . (lude + liminaries)

A – finite set of actions, P – finite set of predicates
f ∈ Σ – an l -ary operation, defined by:

preg transition rules (RA):

{xi
aij
−→ yij | i ∈ I+} {Pijxi | i ∈ J+}

{xi
b
9 | i ∈ I−, b ∈ Bi} {¬Qxi | i ∈ J−,Q ∈ Qi}

f (x1, . . . , xl)
c
−→ C [~x , ~y]

preg predicate rules (RP):

{xi
aij
−→ yij | i ∈ I+} {Pijxi | i ∈ J+}

{xi
b
9 | i ∈ I−, b ∈ Bi} {¬Qxi | i ∈ J−,Q ∈ Qi}

P(f (x1, . . . , xl))

preg system: G = (Σ,RA ∪RP)

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Introduction

Pre . (lude + liminaries)

A – finite set of actions, P – finite set of predicates
f ∈ Σ – an l -ary operation, defined by:

preg transition rules (RA):

{xi
aij
−→ yij | i ∈ I+} {Pijxi | i ∈ J+}

{xi
b
9 | i ∈ I−, b ∈ Bi} {¬Qxi | i ∈ J−,Q ∈ Qi}

f (x1, . . . , xl)
c
−→ C [~x , ~y]

preg predicate rules (RP):

{xi
aij
−→ yij | i ∈ I+} {Pijxi | i ∈ J+}

{xi
b
9 | i ∈ I−, b ∈ Bi} {¬Qxi | i ∈ J−,Q ∈ Qi}

P(f (x1, . . . , xl))

preg system: G = (Σ,RA ∪RP)

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

Finite trees Parallel composition || Immediate termination ↓

Syntax: t ::= δ | κ↓ | a.t (∀a ∈ A) | t + t | t ‖ t

Semantics:























a.x
a
−→ x

x
a
−→ x ′

x + y
a
−→ x ′

y
a
−→ y ′

x + y
a
−→ y ′

κ↓ ↓

x ↓

(x + y) ↓

y ↓

(x + y) ↓

x
a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

y
a
−→ y ′

x ‖ y
a
−→ x ‖ y ′

x ↓ y ↓

(x ‖ y) ↓

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

Finite trees Parallel composition || Immediate termination ↓

Syntax: t ::= δ | κ↓ | a.t (∀a ∈ A) | t + t | t ‖ t

Semantics:























a.x
a
−→ x

x
a
−→ x ′

x + y
a
−→ x ′

y
a
−→ y ′

x + y
a
−→ y ′

κ↓ ↓

x ↓

(x + y) ↓

y ↓

(x + y) ↓

x
a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

y
a
−→ y ′

x ‖ y
a
−→ x ‖ y ′

x ↓ y ↓

(x ‖ y) ↓

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

Finite trees Parallel composition || Immediate termination ↓

Syntax: t ::= δ | κ↓ | a.t (∀a ∈ A) | t + t | t ‖ t

Semantics:























a.x
a
−→ x

x
a
−→ x ′

x + y
a
−→ x ′

y
a
−→ y ′

x + y
a
−→ y ′

κ↓ ↓

x ↓

(x + y) ↓

y ↓

(x + y) ↓

x
a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

y
a
−→ y ′

x ‖ y
a
−→ x ‖ y ′

x ↓ y ↓

(x ‖ y) ↓

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

Finite trees Parallel composition || Immediate termination ↓

Syntax: t ::= δ | κ↓ | a.t (∀a ∈ A) | t + t | t ‖ t

Semantics:























a.x
a
−→ x

x
a
−→ x ′

x + y
a
−→ x ′

y
a
−→ y ′

x + y
a
−→ y ′

κ↓ ↓

x ↓

(x + y) ↓

y ↓

(x + y) ↓

x
a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

y
a
−→ y ′

x ‖ y
a
−→ x ‖ y ′

x ↓ y ↓

(x ‖ y) ↓

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

Finite trees Parallel composition || Immediate termination ↓

Syntax: t ::= δ | κ↓ | a.t (∀a ∈ A) | t + t | t ‖ t

Semantics:























a.x
a
−→ x

x
a
−→ x ′

x + y
a
−→ x ′

y
a
−→ y ′

x + y
a
−→ y ′

κ↓ ↓

x ↓

(x + y) ↓

y ↓

(x + y) ↓

x
a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

y
a
−→ y ′

x ‖ y
a
−→ x ‖ y ′

x ↓ y ↓

(x ‖ y) ↓

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

Finite trees Parallel composition || Immediate termination ↓

Syntax: t ::= δ | κ↓ | a.t (∀a ∈ A) | t + t | t ‖ t

Semantics:























a.x
a
−→ x

x
a
−→ x ′

x + y
a
−→ x ′

y
a
−→ y ′

x + y
a
−→ y ′

κ↓ ↓

x ↓

(x + y) ↓

y ↓

(x + y) ↓

x
a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

y
a
−→ y ′

x ‖ y
a
−→ x ‖ y ′

x ↓ y ↓

(x ‖ y) ↓

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

Finite trees Parallel composition || Immediate termination ↓

Syntax: t ::= δ | κ↓ | a.t (∀a ∈ A) | t + t | t ‖ t

Semantics:























a.x
a
−→ x

x
a
−→ x ′

x + y
a
−→ x ′

y
a
−→ y ′

x + y
a
−→ y ′

κ↓ ↓

x ↓

(x + y) ↓

y ↓

(x + y) ↓

x
a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

y
a
−→ y ′

x ‖ y
a
−→ x ‖ y ′

x ↓ y ↓

(x ‖ y) ↓

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

Question

Is

s = a.κ↓ ‖ a.κ↓ ‖ b.κ↓ ‖ b.κ↓

strongly bisimilar to

t = a.(a.b.b.κ↓ + b.(a.b.κ↓ + b.a.κ↓)) +
b.(a.(a.b.κ↓ + b.a.κ↓) + b.a.a.κ↓)

?

Answer
by using

{

1) the definition of strong bisimilarity
2) an axiomatization modulo bisimilarity

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

Question

Is

s = a.κ↓ ‖ a.κ↓ ‖ b.κ↓ ‖ b.κ↓

strongly bisimilar to

t = a.(a.b.b.κ↓ + b.(a.b.κ↓ + b.a.κ↓)) +
b.(a.(a.b.κ↓ + b.a.κ↓) + b.a.a.κ↓)

?

Answer
by using

{

1) the definition of strong bisimilarity
2) an axiomatization modulo bisimilarity

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

1) By the definition of strong bisimilarity

Definition (Bisimilarity “-”)

A symmetric relation R is a bisimulation iff:

if s R t, a ∈ A and s
a
−→ s ′ then t

a
−→ t ′ and s ′ R t ′;

if s R t, and s ↓ then t ↓.

Terms s and t are bisimilar (s - t) iff s R t and R is a bisimulation.

Assume ‖ is associative, commutative, with κ↓ as the identity.

Does a.κ↓ ‖ a.κ↓ ‖ b.κ↓ ‖ b.κ↓
a
−→ s ′ hold ?

Instantiate
x

a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

as
a.κ↓ ‖ a.κ↓ ‖ b.κ↓

a
−→ s ii

(a.κ↓ ‖ a.κ↓ ‖ b.κ↓) ‖ b.κ↓
a
−→ s ii ‖ b.κ↓

.

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

1) By the definition of strong bisimilarity

Definition (Bisimilarity “-”)

A symmetric relation R is a bisimulation iff:

if s R t, a ∈ A and s
a
−→ s ′ then t

a
−→ t ′ and s ′ R t ′;

if s R t, and s ↓ then t ↓.

Terms s and t are bisimilar (s - t) iff s R t and R is a bisimulation.

Assume ‖ is associative, commutative, with κ↓ as the identity.

Does a.κ↓ ‖ a.κ↓ ‖ b.κ↓ ‖ b.κ↓
a
−→ s ′ hold ?

Instantiate
x

a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

as
a.κ↓ ‖ a.κ↓ ‖ b.κ↓

a
−→ s ii ?

(a.κ↓ ‖ a.κ↓ ‖ b.κ↓) ‖ b.κ↓
a
−→ s ii ‖ b.κ↓

.

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

1) By the definition of strong bisimilarity

Definition (Bisimilarity “-”)

A symmetric relation R is a bisimulation iff:

if s R t, a ∈ A and s
a
−→ s ′ then t

a
−→ t ′ and s ′ R t ′;

if s R t, and s ↓ then t ↓.

Terms s and t are bisimilar (s - t) iff s R t and R is a bisimulation.

Assume ‖ is associative, commutative, with κ↓ as the identity.

So, does a.κ↓ ‖ a.κ↓ ‖ b.κ↓
a
−→ s ii hold ?

Instantiate
x

a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

as
a.κ↓ ‖ a.κ↓

a
−→ s iii

(a.κ↓ ‖ a.κ↓) ‖ b.κ↓
a
−→ s iii ‖ b.κ↓

.

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

1) By the definition of strong bisimilarity

Definition (Bisimilarity “-”)

A symmetric relation R is a bisimulation iff:

if s R t, a ∈ A and s
a
−→ s ′ then t

a
−→ t ′ and s ′ R t ′;

if s R t, and s ↓ then t ↓.

Terms s and t are bisimilar (s - t) iff s R t and R is a bisimulation.

Assume ‖ is associative, commutative, with κ↓ as the identity.

So, does a.κ↓ ‖ a.κ↓ ‖ b.κ↓
a
−→ s ii hold ?

Instantiate
x

a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

as
a.κ↓ ‖ a.κ↓

a
−→ s iii ?

(a.κ↓ ‖ a.κ↓) ‖ b.κ↓
a
−→ s iii ‖ b.κ↓

.

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

1) By the definition of strong bisimilarity

Definition (Bisimilarity “-”)

A symmetric relation R is a bisimulation iff:

if s R t, a ∈ A and s
a
−→ s ′ then t

a
−→ t ′ and s ′ R t ′;

if s R t, and s ↓ then t ↓.

Terms s and t are bisimilar (s - t) iff s R t and R is a bisimulation.

Assume ‖ is associative, commutative, with κ↓ as the identity.

So, does a.κ↓ ‖ a.κ↓
a
−→ s iii hold ?

Instantiate
x

a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

as
a.κ↓

a
−→ s iv

a.κ↓ ‖ a.κ↓
a
−→ s iv ‖ a.κ↓

.

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

1) By the definition of strong bisimilarity

Definition (Bisimilarity “-”)

A symmetric relation R is a bisimulation iff:

if s R t, a ∈ A and s
a
−→ s ′ then t

a
−→ t ′ and s ′ R t ′;

if s R t, and s ↓ then t ↓.

Terms s and t are bisimilar (s - t) iff s R t and R is a bisimulation.

Assume ‖ is associative, commutative, with κ↓ as the identity.

So, does a.κ↓ ‖ a.κ↓
a
−→ s iii hold ?

Instantiate
x

a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

as
a.κ↓

a
−→ s iv ?

a.κ↓ ‖ a.κ↓
a
−→ s iv ‖ a.κ↓

.

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

1) By the definition of strong bisimilarity

Definition (Bisimilarity “-”)

A symmetric relation R is a bisimulation iff:

if s R t, a ∈ A and s
a
−→ s ′ then t

a
−→ t ′ and s ′ R t ′;

if s R t, and s ↓ then t ↓.

Terms s and t are bisimilar (s - t) iff s R t and R is a bisimulation.

Assume ‖ is associative, commutative, with κ↓ as the identity.

So, does a.κ↓
a
−→ s iv hold ?

Instantiate
a.x

a
−→ x

as
a.κ↓

a
−→ κ↓

.

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

1) By the definition of strong bisimilarity

Definition (Bisimilarity “-”)

A symmetric relation R is a bisimulation iff:

if s R t, a ∈ A and s
a
−→ s ′ then t

a
−→ t ′ and s ′ R t ′;

if s R t, and s ↓ then t ↓.

Terms s and t are bisimilar (s - t) iff s R t and R is a bisimulation.

Assume ‖ is associative, commutative, with κ↓ as the identity.

So, does a.κ↓
a
−→ s iv hold ?

Instantiate
a.x

a
−→ x

as
a.κ↓

a
−→ κ↓

. X

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

1) By the definition of strong bisimilarity

Definition (Bisimilarity “-”)

A symmetric relation R is a bisimulation iff:

if s R t, a ∈ A and s
a
−→ s ′ then t

a
−→ t ′ and s ′ R t ′;

if s R t, and s ↓ then t ↓.

Terms s and t are bisimilar (s - t) iff s R t and R is a bisimulation.

Assume ‖ is associative, commutative, with κ↓ as the identity.

Therefore, at the end of the day, it holds that:

a.κ↓ ‖ a.κ↓ ‖ b.κ↓ ‖ b.κ↓
a
−→ s ′ = a.κ↓ ‖ b.κ↓ ‖ b.κ↓

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

1) By the definition of strong bisimilarity

s = a.κ↓ ‖ a.κ↓ ‖ b.κ↓ ‖ b.κ↓ t = a.(a.b.b.κ↓ + b.(a.b.κ↓ + b.a.κ↓)) +
b.(a.(a.b.κ↓ + b.a.κ↓) + b.a.a.κ↓)

s

a b

a.κ↓ ‖ b.κ↓
‖ b.κ↓

a
b

a.κ↓ ‖ a.κ↓
‖ b.κ↓

a
b

b.κ↓ ‖ b.κ↓

b

a.κ↓ ‖ b.κ↓

a
b

a.κ↓ ‖ b.κ↓
a

b

a.κ↓ ‖ a.κ↓

a

b.κ↓

b

b.κ↓

b

a.κ↓

a

b.κ↓

b

a.κ↓

a

a.κ↓

a

κ↓ κ↓ κ↓ κ↓ κ↓ κ↓

t

a b

a b a b

b a b a b a

b b a b a a

κ↓ κ↓ κ↓ κ↓ κ↓ κ↓

s - t

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

1) By the definition of strong bisimilarity

Demo

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

2) By an axiomatization modulo bisimilarity

x + x = x

x + y = y + x

(x + y) + z = x + (y + z)
x + δ = x

x ‖ y = x ‖1 y + x ‖2 y + x ‖3 y
x ‖1 (y + z) = x ‖1 y + x ‖1 z
(x + y) ‖1 z = x ‖1 z + y ‖1 z
(x + y) ‖2 z = x ‖2 z + y ‖2 z
x ‖3 (y + z) = x ‖3 y + x ‖3 z

k↓ ‖1 k↓ = k↓
a.x ′ ‖2 y = a.(x ′ ‖2 y)
x ‖3 a.y ′ = a.(x ‖3 y ′)

x ‖1/2/3 y = δ, otherwise

Using this axiomatization
seems to be less intuitive,
however, it is

much faster, and

derived for free.

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

2) By an axiomatization modulo bisimilarity

x + x = x

x + y = y + x

(x + y) + z = x + (y + z)
x + δ = x

x ‖ y = x ‖1 y + x ‖2 y + x ‖3 y
x ‖1 (y + z) = x ‖1 y + x ‖1 z
(x + y) ‖1 z = x ‖1 z + y ‖1 z
(x + y) ‖2 z = x ‖2 z + y ‖2 z
x ‖3 (y + z) = x ‖3 y + x ‖3 z

k↓ ‖1 k↓ = k↓
a.x ′ ‖2 y = a.(x ′ ‖2 y)
x ‖3 a.y ′ = a.(x ‖3 y ′)

x ‖1/2/3 y = δ, otherwise

Using this axiomatization
seems to be less intuitive,
however, it is

much faster, and

derived for free.

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Case Study

2) By an axiomatization modulo bisimilarity

Demo

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Introduction

PREG Axiomatizer

the first public tool for automatically deriving sound
and ground-complete axiomatizations modulo
bisimilarity for GSOS-like languages (to our
knowledge)

downloadable from
http://goriac.info/tools/preg-axiomatizer/

implemented using

Maude for the theory (∼2000 lines)
Python for the graphic user interface (∼300 lines)

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

http://goriac.info/tools/preg-axiomatizer/

Motivation Tool presentation In the end

Other case studies

; and while do

x
a
−→ x ′

x ;y
a
−→ x ′;y

:
X -(a)-> X’

===
X ; Y -(a)-> (X’ ; Y)

x ↓ y
a
−→ y ′

x ;y
a
−→ y ′

:
P(X) , Y -(a)-> Y’

===
X ; Y -(a)-> Y’

x ↓ y ↓

(x ;y) ↓
:
P(X) , P(Y)

===
P(X ; Y)

x ↓

(while x do y) ↓
:

P(X)
===

P(while X do Y)

x
a
−→ x ′

while x do y
a
−→ y ; while x ′ do y

:
X -(a)-> X’

===
(while X do Y) -(a)-> (Y ;(while X’ do Y))

The following holds:

a.(a.a.κ↓; b.(a.a.κ↓;b.a.a.κ↓)) - while a.b.b.κ↓ do a.a.κ↓ .

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Other case studies

; and while do

Demo

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Other case studies

||

x ↓ y ↓

(x ‖ y) ↓
:

P(X) , P(Y)
===

P(X || Y)

x
act
−−→ x ′

x ‖ y
act
−−→ x ′ ‖ y

:
X -(act)-> X’

===
X || Y -(act)-> X’ || Y

y
act
−−→ y ′

x ‖ y
act
−−→ x ‖ y ′

:
Y -(act)-> Y’

===
X || Y -(act)-> X’ || Y

x
p!d
−−→ x ′ y

p?d
−−→ y ′

x ‖ y
p#d
−−−→ x ′ ‖ y ′

:
X -(p!d)-> X’ , Y -(p?d)-> Y’

===
X || Y -(p#d)-> X’ || Y’

x
p?d
−−→ x ′ y

p!d
−−→ y ′

x ‖ y
p#d
−−−→ x ′ ‖ y ′

:
X -(p?d)-> X’ , Y -(p!d)-> Y’

===
X || Y -(p#d)-> X’ || Y’

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Other case studies

||

Consider the process network
ia

A
ab

ac

B C
co

, where

A,B ,C are the communicating processes,

ia, ab, ac , co are the ports, and

the actions of sending and receiving the datum d over the
port p are denoted by, respectively, p!d and p?d .

The whole protocol is specified as the term

T = ia?d .(ab!d .κ↓ ‖ ac!d .κ↓) ‖ ab?d .κ↓ ‖ ac?d .co!d .κ↓.

In order to enforce the communication over the ports ab and ac ,
one uses the encapsulation operator:

T ′ = ∂{p!d,p?d | p∈{ab,ac}},∅(T).

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Other case studies

||

Consider the process network
ia

A
ab

ac

B C
co

, where

A,B ,C are the communicating processes,

ia, ab, ac , co are the ports, and

the actions of sending and receiving the datum d over the
port p are denoted by, respectively, p!d and p?d .

The whole protocol is specified as the term

T = ia?d .(ab!d .κ↓ ‖ ac!d .κ↓) ‖ ab?d .κ↓ ‖ ac?d .co!d .κ↓.

In order to enforce the communication over the ports ab and ac ,
one uses the encapsulation operator:

T ′ = ∂{p!d,p?d | p∈{ab,ac}},∅(T).

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Other case studies

||

Consider the process network
ia

A
ab

ac

B C
co

, where

A,B ,C are the communicating processes,

ia, ab, ac , co are the ports, and

the actions of sending and receiving the datum d over the
port p are denoted by, respectively, p!d and p?d .

The whole protocol is specified as the term

T = ia?d .(ab!d .κ↓ ‖ ac!d .κ↓) ‖ ab?d .κ↓ ‖ ac?d .co!d .κ↓.

In order to enforce the communication over the ports ab and ac ,
one uses the encapsulation operator:

T ′ = ∂{p!d,p?d | p∈{ab,ac}},∅(T).

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Other case studies

||

Demo

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Other case studies

!

The reentrant server operation ! is defined by
x

a
−→ x ′

!x
a
−→ x ′ ‖ !x

.

In this case a pair of infinite rewriting axioms is derived:

!x =!′(x , x)

!′(a.x ′, x) = a.(x ′ || !x).

This problem occurs only in the case of operations for which a
positive variable appears in the target.

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Facts & Other features

PREG Axiomatizer:

works for operations given in a restricted format, extending
the finite trees with predicates system

however, it covers most of the operators in the literature

generates confluent axiomatizations, but only weakly
normalizing

however, there is a class of systems (linear and syntactically
well-founded) for which it is strongly normalizing

PREG Axiomatizer handles:

format checking,

implicit predicates for trees (a.t terminates if t terminates).

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Facts & Other features

PREG Axiomatizer:

works for operations given in a restricted format, extending
the finite trees with predicates system

however, it covers most of the operators in the literature

generates confluent axiomatizations, but only weakly
normalizing

however, there is a class of systems (linear and syntactically
well-founded) for which it is strongly normalizing

PREG Axiomatizer handles:

format checking,

implicit predicates for trees (a.t terminates if t terminates).

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Facts & Other features

PREG Axiomatizer:

works for operations given in a restricted format, extending
the finite trees with predicates system

however, it covers most of the operators in the literature

generates confluent axiomatizations, but only weakly
normalizing

however, there is a class of systems (linear and syntactically
well-founded) for which it is strongly normalizing

PREG Axiomatizer handles:

format checking,

implicit predicates for trees (a.t terminates if t terminates).

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Facts & Other features

PREG Axiomatizer:

works for operations given in a restricted format, extending
the finite trees with predicates system

however, it covers most of the operators in the literature

generates confluent axiomatizations, but only weakly
normalizing

however, there is a class of systems (linear and syntactically
well-founded) for which it is strongly normalizing

PREG Axiomatizer handles:

format checking,

implicit predicates for trees (a.t terminates if t terminates).

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

Motivation Tool presentation In the end

Future work

Ways to extend and improve the prototype:

integration with external provers and checkers,

format checking (operator properties),

recursively defined terms, open terms,

universal predicates,

detect infinite rewriting axiomatizations,

better user interface,

. . .

Eugen-Ioan Goriac (Reykjavik Uiversity) CALCO’11 PREG Axiomatizer

	Motivation
	Introduction
	Case Study

	Tool presentation
	Introduction
	Other case studies

	In the end
	

