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Purpose
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between processes specified using GSOS operators
faster than by just applying the definition

Extend the expressiveness of the GSOS framework for
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Introduction

Pre . (lude + liminaries)

A – finite set of actions, P – finite set of predicates
f ∈ Σ – an l -ary operation, defined by:

preg transition rules (RA):

{xi
aij
−→ yij | i ∈ I+} {Pijxi | i ∈ J+}

{xi
b
9 | i ∈ I−, b ∈ Bi} {¬Qxi | i ∈ J−,Q ∈ Qi}

f (x1, . . . , xl )
c
−→ C [~x , ~y ]

preg predicate rules (RP):

{xi
aij
−→ yij | i ∈ I+} {Pijxi | i ∈ J+}

{xi
b
9 | i ∈ I−, b ∈ Bi} {¬Qxi | i ∈ J−,Q ∈ Qi}

P(f (x1, . . . , xl ))

preg system: G = (Σ,RA ∪RP)
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Case Study

Finite trees Parallel composition || Immediate termination ↓

Syntax: t ::= δ | κ↓ | a.t (∀a ∈ A) | t + t | t ‖ t

Semantics:























a.x
a
−→ x

x
a
−→ x ′

x + y
a
−→ x ′

y
a
−→ y ′

x + y
a
−→ y ′

κ↓ ↓

x ↓

(x + y) ↓

y ↓

(x + y) ↓

x
a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

y
a
−→ y ′

x ‖ y
a
−→ x ‖ y ′

x ↓ y ↓

(x ‖ y) ↓
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Case Study

Question

Is

s = a.κ↓ ‖ a.κ↓ ‖ b.κ↓ ‖ b.κ↓

strongly bisimilar to

t = a.(a.b.b.κ↓ + b.(a.b.κ↓ + b.a.κ↓)) +
b.(a.(a.b.κ↓ + b.a.κ↓) + b.a.a.κ↓)

?

Answer
by using

{

1) the definition of strong bisimilarity
2) an axiomatization modulo bisimilarity
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Case Study

1) By the definition of strong bisimilarity

Definition (Bisimilarity “-”)

A symmetric relation R is a bisimulation iff:

if s R t, a ∈ A and s
a
−→ s ′ then t

a
−→ t ′ and s ′ R t ′;

if s R t, and s ↓ then t ↓.

Terms s and t are bisimilar (s - t) iff s R t and R is a bisimulation.

Assume ‖ is associative, commutative, with κ↓ as the identity.

Does a.κ↓ ‖ a.κ↓ ‖ b.κ↓ ‖ b.κ↓
a
−→ s ′ hold ?

Instantiate
x

a
−→ x ′

x ‖ y
a
−→ x ′ ‖ y

as
a.κ↓ ‖ a.κ↓ ‖ b.κ↓

a
−→ s ii

(a.κ↓ ‖ a.κ↓ ‖ b.κ↓) ‖ b.κ↓
a
−→ s ii ‖ b.κ↓

.
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Case Study

1) By the definition of strong bisimilarity

Definition (Bisimilarity “-”)

A symmetric relation R is a bisimulation iff:

if s R t, a ∈ A and s
a
−→ s ′ then t

a
−→ t ′ and s ′ R t ′;

if s R t, and s ↓ then t ↓.

Terms s and t are bisimilar (s - t) iff s R t and R is a bisimulation.

Assume ‖ is associative, commutative, with κ↓ as the identity.

Therefore, at the end of the day, it holds that:

a.κ↓ ‖ a.κ↓ ‖ b.κ↓ ‖ b.κ↓
a
−→ s ′ = a.κ↓ ‖ b.κ↓ ‖ b.κ↓
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Case Study

1) By the definition of strong bisimilarity

s = a.κ↓ ‖ a.κ↓ ‖ b.κ↓ ‖ b.κ↓ t = a.(a.b.b.κ↓ + b.(a.b.κ↓ + b.a.κ↓)) +
b.(a.(a.b.κ↓ + b.a.κ↓) + b.a.a.κ↓)

s

a b

a.κ↓ ‖ b.κ↓
‖ b.κ↓

a
b

a.κ↓ ‖ a.κ↓
‖ b.κ↓

a
b

b.κ↓ ‖ b.κ↓

b

a.κ↓ ‖ b.κ↓

a
b

a.κ↓ ‖ b.κ↓
a

b

a.κ↓ ‖ a.κ↓

a

b.κ↓

b

b.κ↓

b

a.κ↓

a

b.κ↓

b

a.κ↓

a

a.κ↓

a

κ↓ κ↓ κ↓ κ↓ κ↓ κ↓

t

a b

a b a b

b a b a b a

b b a b a a

κ↓ κ↓ κ↓ κ↓ κ↓ κ↓

s - t
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Case Study

1) By the definition of strong bisimilarity

Demo
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Case Study

2) By an axiomatization modulo bisimilarity

x + x = x

x + y = y + x

(x + y) + z = x + (y + z)
x + δ = x

x ‖ y = x ‖1 y + x ‖2 y + x ‖3 y
x ‖1 (y + z) = x ‖1 y + x ‖1 z
(x + y) ‖1 z = x ‖1 z + y ‖1 z
(x + y) ‖2 z = x ‖2 z + y ‖2 z
x ‖3 (y + z) = x ‖3 y + x ‖3 z

k↓ ‖1 k↓ = k↓
a.x ′ ‖2 y = a.(x ′ ‖2 y)
x ‖3 a.y ′ = a.(x ‖3 y ′)

x ‖1/2/3 y = δ, otherwise

Using this axiomatization
seems to be less intuitive,
however, it is

much faster, and

derived for free.
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Introduction

PREG Axiomatizer

the first public tool for automatically deriving sound
and ground-complete axiomatizations modulo
bisimilarity for GSOS-like languages (to our
knowledge)

downloadable from
http://goriac.info/tools/preg-axiomatizer/

implemented using

Maude for the theory (∼2000 lines)
Python for the graphic user interface (∼300 lines)
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Other case studies

; and while do

x
a
−→ x ′

x ;y
a
−→ x ′;y

:
X -(a)-> X’

===
X ; Y -(a)-> (X’ ; Y)

x ↓ y
a
−→ y ′

x ;y
a
−→ y ′

:
P(X) , Y -(a)-> Y’

===
X ; Y -(a)-> Y’

x ↓ y ↓

(x ;y) ↓
:
P(X) , P(Y)

===
P(X ; Y)

x ↓

(while x do y) ↓
:

P(X)
===

P(while X do Y)

x
a
−→ x ′

while x do y
a
−→ y ; while x ′ do y

:
X -(a)-> X’

===
(while X do Y) -(a)-> (Y ;(while X’ do Y))

The following holds:

a.(a.a.κ↓; b.(a.a.κ↓;b.a.a.κ↓)) - while a.b.b.κ↓ do a.a.κ↓ .
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||

x ↓ y ↓

(x ‖ y) ↓
:

P(X) , P(Y)
===

P(X || Y)

x
act
−−→ x ′

x ‖ y
act
−−→ x ′ ‖ y

:
X -(act)-> X’

===
X || Y -(act)-> X’ || Y

y
act
−−→ y ′

x ‖ y
act
−−→ x ‖ y ′

:
Y -(act)-> Y’

===
X || Y -(act)-> X’ || Y

x
p!d
−−→ x ′ y

p?d
−−→ y ′

x ‖ y
p#d
−−−→ x ′ ‖ y ′

:
X -(p!d)-> X’ , Y -(p?d)-> Y’

===
X || Y -(p#d)-> X’ || Y’

x
p?d
−−→ x ′ y

p!d
−−→ y ′

x ‖ y
p#d
−−−→ x ′ ‖ y ′

:
X -(p?d)-> X’ , Y -(p!d)-> Y’

===
X || Y -(p#d)-> X’ || Y’
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||

Consider the process network
ia

A
ab

ac

B C
co

, where

A,B ,C are the communicating processes,

ia, ab, ac , co are the ports, and

the actions of sending and receiving the datum d over the
port p are denoted by, respectively, p!d and p?d .

The whole protocol is specified as the term

T = ia?d .(ab!d .κ↓ ‖ ac!d .κ↓) ‖ ab?d .κ↓ ‖ ac?d .co!d .κ↓.

In order to enforce the communication over the ports ab and ac ,
one uses the encapsulation operator:

T ′ = ∂{p!d,p?d | p∈{ab,ac}},∅(T ).
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||

Demo
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!

The reentrant server operation ! is defined by
x

a
−→ x ′

!x
a
−→ x ′ ‖ !x

.

In this case a pair of infinite rewriting axioms is derived:

!x =!′(x , x)

!′(a.x ′, x) = a.(x ′ || !x).

This problem occurs only in the case of operations for which a
positive variable appears in the target.
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Facts & Other features

PREG Axiomatizer:

works for operations given in a restricted format, extending
the finite trees with predicates system

however, it covers most of the operators in the literature

generates confluent axiomatizations, but only weakly
normalizing

however, there is a class of systems (linear and syntactically
well-founded) for which it is strongly normalizing

PREG Axiomatizer handles:

format checking,

implicit predicates for trees (a.t terminates if t terminates).
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Future work

Ways to extend and improve the prototype:

integration with external provers and checkers,

format checking (operator properties),

recursively defined terms, open terms,

universal predicates,

detect infinite rewriting axiomatizations,

better user interface,

. . .
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