Finitary functors: from Set to Preord and Poset

Adriana Balan¹ Alexander Kurz²

¹University Politehnica of Bucharest, Romania

²University of Leicester, UK

4th Conference on Algebra and Coalgebra in Computer Science, 2011

Motivation

- Most of coalgebraic logic is focussed on Set-coalgebras and their associated (Boolean) logics.
- Investigation of coalgebraic logic over Poset already started expressivity results [Kurz-Kapulkin-Velebil CMCS2010].
- Would deserve a systematic investigation of Poset-functors and their coalgebras.
- In this talk: we restrict on how to move from (finitary) Set-functors (fairly-well understood) to Preord and Poset-functors with a quick look on their properties and coalgebras.

- 4 回 2 - 4 三 2 - 4 三 3

Outline

1 Extensions and liftings

2 From Set-functors to Preord-functors

- Order on variables
- Order on operations
- Order both variables and operations

3 Finally, from Preord to Poset

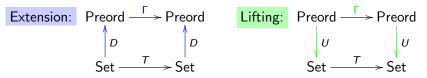
4) Further work

< ∃ >

• Similarly we can define extensions/liftings to Poset.

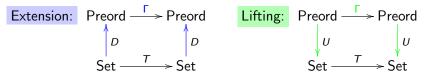
- We fix a *Set*-functor *T*
- - Similarly we can define extensions/liftings to Poset.
 - We require for Γ (lifting or extension) to be locally monotone and also finitary if T is finitary.

- We fix a *Set*-functor *T*
- Recall the adjunction Set \xrightarrow{D} Preord



- Similarly we can define extensions/liftings to Poset.
- We require for Γ (lifting or extension) to be locally monotone and also finitary if T is finitary.
- If Γ : Preord \rightarrow Preord is a lifting/extension of T, then $T = U\Gamma D$.

- We fix a *Set*-functor *T*
- Recall the adjunction Set $\underbrace{\square}_{\mu}$ Preord



- Similarly we can define extensions/liftings to Poset.
- We require for Γ (lifting or extension) to be locally monotone and also finitary if T is finitary.
- If Γ : Preord \rightarrow Preord is a lifting/extension of T, then $T = U\Gamma D$.
- What about the composition $\Gamma = DTU$?

向下 イヨト イヨト

- We fix a *Set*-functor *T*
- Recall the adjunction Set \xrightarrow{D} Preord



- Similarly we can define extensions/liftings to Poset.
- We require for Γ (lifting or extension) to be locally monotone and also finitary if T is finitary.
- If Γ : Preord \rightarrow Preord is a lifting/extension of T, then $T = U\Gamma D$.
- What about the composition $\Gamma = DTU$? DTU is not locally monotone.

向下 イヨト イヨト

Example of a finitary Set-functor having an extension which is not finitary

• Consider the functor $T : Set \rightarrow Set$,

 $TX = \{I : \mathbb{N} \to X \mid I(n) = I(n+1) \text{ for all but a finite number of } n\}$

• T is finitary

→ Ξ →

Example of a finitary Set-functor having an extension which is not finitary

• Consider the functor $T : \mathsf{Set} \to \mathsf{Set}$,

 $TX = \{I : \mathbb{N} \to X \mid I(n) = I(n+1) \text{ for all but a finite number of } n\}$

• T is finitary and has the Preord-extension

$$\Gamma(X, \leq) = \{I : (\mathbb{N}, \leq) \to (X, \leq) \mid I(n) \leq I(n+1)$$

for all but a finite number of $n\}$

with the pointwise order.

• But Γ is not finitary: take the sequence

$$(\underline{1}, \leq) \subseteq (\underline{2}, \leq) \subseteq \ldots \longrightarrow (\mathbb{N}, \leq)$$

• Then $\Gamma(\mathbb{N}, \leq) \ncong$ colim $\Gamma(\underline{n}, \leq)$.

イロト イポト イヨト イヨ

More on extensions/liftings

Extensions and liftings are not unique.

Examples:

Extension T = Id $\Gamma_1 = Id$ $\Gamma_2 = (discrete)$ connected component functor Lifting $TX = 2 \times X$ $\Gamma_1(X, \leq) = \mathbf{2} \times X$, product order $\Gamma_2(X, \leq) = \mathbf{2} \ltimes X$, lexicographic order

<回> < 回> < 回> < 回>

About coalgebras

 Γ extension of T

Set
$$\xrightarrow{D}_{\leftarrow \top}$$
 Preord

$$\operatorname{Coalg}(T) \xrightarrow[\tilde{C}]{T} \operatorname{Coalg}(\Gamma)$$

Final Γ -coalgebra is the (discrete) final T-coalgebra.

CALCO 2011

7 / 27

About coalgebras

 Γ extension of T

Set
$$\xrightarrow{D}_{\leftarrow \top}$$
 Preord

$$\operatorname{Coalg}(T) \xrightarrow[\tilde{C}]{T} \operatorname{Coalg}(\Gamma)$$

Final Γ -coalgebra is the (discrete) final T-coalgebra.

 Γ lifting of T

Set
$$\xrightarrow{D}$$
 \downarrow Preord

$$\operatorname{Coalg}(T) \xrightarrow[\tilde{U}]{\overset{\tilde{D}}{\prec}}_{\tilde{U}} \operatorname{Coalg}(\Gamma)$$

Final Γ -coalgebra is the final T-coalgebra with some preorder.

< (T) >

→ Ξ →

Outline

Extensions and liftings

Prom Set-functors to Preord-functors

- Order on variables
- Order on operations
- Order both variables and operations

3 Finally, from Preord to Poset

4 Further work

< ∃ >

Outline

Extensions and liftings

Prom Set-functors to Preord-functors

- Order on variables
- Order on operations
- Order both variables and operations

3 Finally, from Preord to Poset

4 Further work

< E.

T finitary Set-functor \iff quotient of a polynomial functor.

$$\coprod_{n<\omega}\Sigma_n\times X^n\longrightarrow TX$$

< ∃ >

CALCO 2011

10 / 27

T finitary Set-functor \iff quotient of a polynomial functor. Canonical presentation:

$$\coprod_{m,n<\omega} \mathsf{Set}(\underline{m},\underline{n}) \times T\underline{m} \times X^n \Longrightarrow \prod_{n<\omega} T\underline{n} \times X^n \longrightarrow TX$$

(4) (3) (4) (4) (4)

CALCO 2011

10 / 27

 ${\cal T}$ finitary Set-functor \iff quotient of a polynomial functor. Canonical presentation:

Now: (X, \leq) preordered set. And compute the coequalizer in Preord

$$\coprod_{m,n<\omega}\mathsf{Set}(\underline{m},\underline{n})\times T\underline{m}\times (X^n,\leq) \Longrightarrow \coprod_{n<\omega} T\underline{n}\times (X^n,\leq) \longrightarrow TX$$

A B N A B N

T finitary Set-functor \iff quotient of a polynomial functor. Canonical presentation:

Now: (X, \leq) preordered set. And compute the coequalizer in Preord

 $\coprod_{m,n<\omega} \operatorname{Set}(\underline{m},\underline{n}) \times T\underline{m} \times (X^n, \leq) \Longrightarrow \coprod_{n<\omega} T\underline{n} \times (X^n, \leq) \longrightarrow (TX, \trianglelefteq)$

(本間) (本語) (本語) (語)

CALCO 2011

10 / 27

T finitary Set-functor \iff quotient of a polynomial functor. Canonical presentation:

Now: (X, \leq) preordered set. And compute the coequalizer in Preord

$$\coprod_{m,n<\omega}\mathsf{Set}(\underline{m},\underline{n})\times T\underline{m}\times (X^n,\leq) \Longrightarrow \coprod_{n<\omega} T\underline{n}\times (X^n,\leq) \longrightarrow (TX,\trianglelefteq)$$

Obtain functor $\tilde{\mathcal{T}}(X, \leq) = (\mathcal{T}X, \leq)$: Preord \rightarrow Preord

- Locally monotone
- Both lifting and extension
- Call \tilde{T} the *preordification* of T

CALCO 2011

10 / 27

Proposition

 \tilde{T} is independent of the chosen presentation of T.

э

< ≣ >

Proposition

 \tilde{T} is independent of the chosen presentation of T.

Examples

• $TX = X^*$

Then \leq compares lists of same length element by element:

$$[x_0 \dots x_{n-1}] \trianglelefteq [y_0 \dots y_{m-1}] \Leftrightarrow m = n \land x_i \le y_i, \forall i < n$$

• $TX = \mathcal{P}_f X$ Then \leq is the Egli-Milner preorder on $\mathcal{P}_f(X, \leq)$:

$$u \trianglelefteq v \text{ for } u, v \subseteq X \text{ finite } \Leftrightarrow \begin{cases} \forall a \in u \ \exists b \in v. \quad a \leq b \\ \forall b \in v \ \exists a \in u. \quad a \leq b \end{cases}$$

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

Outline

Extensions and liftings

Prom Set-functors to Preord-functors

- Order on variables
- Order on operations
- Order both variables and operations

3 Finally, from Preord to Poset

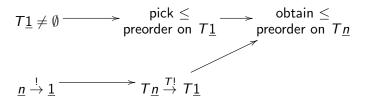
< E.

- T finitary Set functor.
 - Take $(T\underline{n}, \leq)$ preordered such that $Tf : (T\underline{m}, \leq) \rightarrow (T\underline{n}, \leq)$ is monotone for any map $f : \underline{m} \rightarrow \underline{n}$.

白 ト イヨ ト イヨト

- T finitary Set functor.
 - Take $(T\underline{n}, \leq)$ preordered such that $Tf : (T\underline{m}, \leq) \rightarrow (T\underline{n}, \leq)$ is monotone for any map $f : \underline{m} \rightarrow \underline{n}$.
 - Motivation: there are natural examples, like \mathcal{P}_f with inclusion.

- T finitary Set functor.
 - Take $(T\underline{n}, \leq)$ preordered such that $Tf : (T\underline{m}, \leq) \rightarrow (T\underline{n}, \leq)$ is monotone for any map $f : \underline{m} \rightarrow \underline{n}$.
 - Motivation: there are natural examples, like \mathcal{P}_f with inclusion.
 - But also easy general example:



• Preorder on signature $(T\underline{n}, \leq)_{n < \omega}$

- Preorder on signature $(T\underline{n}, \leq)_{n < \omega}$
- Coequalizer in Set

$$\coprod_{m,n<\omega} \mathsf{Set}(\underline{m},\underline{n}) \times T\underline{m} \times X^n \Longrightarrow \prod_{n<\omega} T\underline{n} \times X^n \longrightarrow TX$$

< ∃ >

- Preorder on signature $(T\underline{n}, \leq)_{n < \omega}$
- Coequalizer in Preord

 $\coprod_{m,n<\omega}\mathsf{Set}(\underline{m},\underline{n})\times(T\underline{m},\leq)\times X^{n} \xrightarrow{\longrightarrow} \coprod_{n<\omega}(T\underline{n},\leq)\times X^{n} \xrightarrow{\longrightarrow}(TX,\sqsubseteq)$

白 ト イヨト イヨト

- Preorder on signature $(T\underline{n}, \leq)_{n < \omega}$
- Coequalizer in Preord

 $\coprod_{m,n<\omega}\mathsf{Set}(\underline{m},\underline{n})\times(T\underline{m},\leq)\times X^{n} \xrightarrow{\longrightarrow} \coprod_{n<\omega}(T\underline{n},\leq)\times X^{n} \xrightarrow{\longrightarrow}(TX,\sqsubseteq)$

向下 イヨト イヨト

- Preorder on signature $(T\underline{n}, \leq)_{n < \omega}$
- Coequalizer in Preord

$$\coprod_{m,n<\omega}\mathsf{Set}(\underline{m},\underline{n})\times(T\underline{m},\leq)\times X^{n} \xrightarrow{\longrightarrow} \coprod_{n<\omega}(T\underline{n},\leq)\times X^{n} \xrightarrow{\longrightarrow}(TX,\sqsubseteq)$$

Order: Preord $\bar{\tau}$ $\downarrow v$

- Preorder on signature $(T\underline{n}, \leq)_{n < \omega}$
- Coequalizer in Preord

 $\coprod_{m,n<\omega}\mathsf{Set}(\underline{m},\underline{n})\times(T\underline{m},\leq)\times X^{n} \xrightarrow{\longrightarrow} \coprod_{n<\omega}(T\underline{n},\leq)\times X^{n} \xrightarrow{\longrightarrow}(TX,\sqsubseteq)$

Proposition

• The preorder on the signature is recovered.

• There is an one-to-one correspondence order $\overline{T}X = (TX, \sqsubseteq) \iff$ preorder on signature $(T\underline{n}, \leq)_{n < \omega}$

イロト イポト イヨト イヨト

Second ingredient in second construction: *T*-relators

 For relation R ⊆ X × Y, the T-relation lifting Rel_T(R) ⊆ TX × TY is described as

 $(u, v) \in \operatorname{Rel}_T(R) \Leftrightarrow \exists w \in TR. \ T\pi_1(w) = u \land \ T\pi_2(w) = v,$

where $X \stackrel{\pi_1}{\longleftrightarrow} R \stackrel{\pi_2}{\longrightarrow} Y$.

- Now: assume order $\overline{T}X = (TX, \sqsubseteq)$ on T.
- For any relation $R \subseteq X \times Y$, the *T*-relator $\operatorname{Rel}_{T}^{\sqsubseteq}(R) \subseteq TX \times TY$ is given by

 $(u,v) \in \operatorname{\mathsf{Rel}}_{\mathcal{T}}^{\sqsubseteq}(R) \Leftrightarrow \exists w \in \mathcal{T}(R). \ u \sqsubseteq \mathcal{T}\pi_1(w) \land \mathcal{T}\pi_2(w) \sqsubseteq v$

- 4 回 ト 4 ヨ ト 4 ヨ ト

CALCO 2011

15 / 27

[Thijs 1996, Hughes-Jacobs 2004]

Properties of *T*-relators

•
$$\sqsubseteq_{TX} = \operatorname{Rel}_{T}^{\sqsubseteq}(=_{X})$$
. If $R \subseteq S$ then $\operatorname{Rel}_{T}^{\sqsubseteq}(R) \subseteq \operatorname{Rel}_{T}^{\sqsubseteq}(S)$.

A. Balan (UPB), A. Kurz (UL)

CALCO 2011 16 / 27

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Properties of *T*-relators

- $\sqsubseteq_{TX} = \operatorname{Rel}_{T}^{\sqsubseteq}(=_{X})$. If $R \subseteq S$ then $\operatorname{Rel}_{T}^{\sqsubseteq}(R) \subseteq \operatorname{Rel}_{T}^{\sqsubseteq}(S)$.
- For any functions $f: X \to X'$, $g: Y \to Y'$ and any relation $R' \subseteq X' \times Y'$, $\text{Rel}_{\overline{T}}^{\subseteq}((f \times g)^{-1}(R')) \subseteq (Tf \times Tg)^{-1}(\text{Rel}_{\overline{T}}^{\subseteq}(R'))$

向下 イヨト イヨト

Properties of *T*-relators

- $\sqsubseteq_{TX} = \operatorname{Rel}_{T}^{\sqsubseteq}(=_{X})$. If $R \subseteq S$ then $\operatorname{Rel}_{T}^{\sqsubseteq}(R) \subseteq \operatorname{Rel}_{T}^{\sqsubseteq}(S)$.
- For any functions $f : X \to X'$, $g : Y \to Y'$ and any relation $R' \subseteq X' \times Y'$, $\operatorname{Rel}_{\overline{T}}^{\subseteq}((f \times g)^{-1}(R')) \subseteq (Tf \times Tg)^{-1}(\operatorname{Rel}_{\overline{T}}^{\subseteq}(R'))$
- If $R \subseteq X \times Y$ and $S \subseteq Y \times Z$, then $\operatorname{Rel}_{\overline{T}}^{\subseteq}(S \circ R) \subseteq \operatorname{Rel}_{\overline{T}}^{\subseteq}(S) \circ \operatorname{Rel}_{\overline{T}}^{\subseteq}(R)$

- $\sqsubseteq_{TX} = \operatorname{Rel}_{T}^{\sqsubseteq}(=_{X})$. If $R \subseteq S$ then $\operatorname{Rel}_{T}^{\sqsubseteq}(R) \subseteq \operatorname{Rel}_{T}^{\sqsubseteq}(S)$.
- For any functions $f : X \to X'$, $g : Y \to Y'$ and any relation $R' \subseteq X' \times Y'$, $\operatorname{Rel}_{\overline{T}}^{\subseteq}((f \times g)^{-1}(R')) \subseteq (Tf \times Tg)^{-1}(\operatorname{Rel}_{\overline{T}}^{\subseteq}(R'))$
- If $R \subseteq X \times Y$ and $S \subseteq Y \times Z$, then $\operatorname{Rel}_{\mathcal{T}}^{\subseteq}(S \circ R) \subseteq \operatorname{Rel}_{\mathcal{T}}^{\subseteq}(S) \circ \operatorname{Rel}_{\mathcal{T}}^{\subseteq}(R)$

• In particular, $\operatorname{Rel}_{\overline{T}}(\leq) \subseteq \operatorname{Rel}_{\overline{T}}(\leq) \circ \operatorname{Rel}_{\overline{T}}(\leq)$ for any preordered set (X, \leq) .

CALCO 2011

- $\sqsubseteq_{TX} = \operatorname{Rel}_{T}^{\sqsubseteq}(=_{X})$. If $R \subseteq S$ then $\operatorname{Rel}_{T}^{\sqsubseteq}(R) \subseteq \operatorname{Rel}_{T}^{\sqsubseteq}(S)$.
- For any functions $f: X \to X'$, $g: Y \to Y'$ and any relation $R' \subseteq X' \times Y'$, $\operatorname{Rel}_{\overline{T}}^{\square}((f \times g)^{-1}(R')) \subseteq (Tf \times Tg)^{-1}(\operatorname{Rel}_{\overline{T}}^{\square}(R'))$ If holds with equality, say that the order \overline{T} is stable.
- If $R \subseteq X \times Y$ and $S \subseteq Y \times Z$, then $\operatorname{Rel}_{\mathcal{T}}^{\subseteq}(S \circ R) \subseteq \operatorname{Rel}_{\mathcal{T}}^{\subseteq}(S) \circ \operatorname{Rel}_{\mathcal{T}}^{\subseteq}(R)$

• In particular, $\operatorname{Rel}_{\overline{T}}(\leq) \subseteq \operatorname{Rel}_{\overline{T}}(\leq) \circ \operatorname{Rel}_{\overline{T}}(\leq)$ for any preordered set (X, \leq) .

- $\sqsubseteq_{TX} = \operatorname{Rel}_{T}^{\sqsubseteq}(=_{X})$. If $R \subseteq S$ then $\operatorname{Rel}_{T}^{\sqsubseteq}(R) \subseteq \operatorname{Rel}_{T}^{\sqsubseteq}(S)$.
- For any functions $f: X \to X'$, $g: Y \to Y'$ and any relation $R' \subseteq X' \times Y'$, $\operatorname{Rel}_{\overline{T}}^{\subseteq}((f \times g)^{-1}(R')) \subseteq (Tf \times Tg)^{-1}(\operatorname{Rel}_{\overline{T}}^{\subseteq}(R'))$ If holds with equality, say that the order \overline{T} is stable.
- If $R \subseteq X \times Y$ and $S \subseteq Y \times Z$, then $\operatorname{Rel}_{\overline{T}}(S \circ R) \subseteq \operatorname{Rel}_{\overline{T}}(S) \circ \operatorname{Rel}_{\overline{T}}(R)$ If holds with equality, say that the order \overline{T} preserves composition of relations.
- In particular, $\operatorname{Rel}_{\overline{T}}(\leq) \subseteq \operatorname{Rel}_{\overline{T}}(\leq) \circ \operatorname{Rel}_{\overline{T}}(\leq)$ for any preordered set (X, \leq) .

- $\sqsubseteq_{TX} = \operatorname{Rel}_{T}^{\sqsubseteq}(=_{X})$. If $R \subseteq S$ then $\operatorname{Rel}_{T}^{\sqsubseteq}(R) \subseteq \operatorname{Rel}_{T}^{\sqsubseteq}(S)$.
- For any functions $f: X \to X'$, $g: Y \to Y'$ and any relation $R' \subseteq X' \times Y'$, $\operatorname{Rel}_{\overline{T}}^{\subseteq}((f \times g)^{-1}(R')) \subseteq (Tf \times Tg)^{-1}(\operatorname{Rel}_{\overline{T}}^{\subseteq}(R'))$ If holds with equality, say that the order \overline{T} is stable.
- If $R \subseteq X \times Y$ and $S \subseteq Y \times Z$, then $\operatorname{Rel}_{\overline{T}}(S \circ R) \subseteq \operatorname{Rel}_{\overline{T}}(S) \circ \operatorname{Rel}_{\overline{T}}(R)$ If holds with equality, say that the order \overline{T} preserves composition of relations.
- In particular, Rel[±]_T(≤) ⊆ Rel[±]_T(≤) ∘ Rel[±]_T(≤) for any preordered set (X, ≤).
 If holds with equality, say that the order *T* preserves composition of preorders.

- 4 回 ト 4 ヨ ト 4 ヨ ト

And now comes the lifting...

- Let $\overline{T}X = (TX, \sqsubseteq)$ an order on T.
- Assume \overline{T} preserves composition of preorders.
- Obtain Preord-lifting of T given by $\hat{T}(X, \leq) = (TX, \operatorname{Rel}_{T} (\leq)).$

And now comes the lifting...

- Let $\overline{T}X = (TX, \sqsubseteq)$ an order on T.
- Assume \overline{T} preserves composition of preorders.
- Obtain Preord-lifting of T given by $\hat{T}(X, \leq) = (TX, \operatorname{Rel}_{T}^{\subseteq}(\leq)).$

Examples

• If the order on T is discrete and T preserves weak pullbacks, then $\operatorname{Rel}_T(\leq) = \trianglelefteq$ and consequently $\hat{T} = \tilde{T} \bullet \operatorname{Preordification}$

And now comes the lifting...

- Let $\overline{T}X = (TX, \sqsubseteq)$ an order on T.
- Assume \overline{T} preserves composition of preorders.
- Obtain Preord-lifting of T given by $\hat{T}(X, \leq) = (TX, \operatorname{Rel}_{\overline{T}}(\leq)).$

Examples

- If the order on T is discrete and T preserves weak pullbacks, then $\operatorname{Rel}_T(\leq) = \trianglelefteq$ and consequently $\hat{T} = \tilde{T} \bullet \operatorname{Preordification}$
- If the order is indiscrete then $\hat{T}(X, \leq) = (TX, TX \times TX)$

More examples

• $T = \mathcal{P}_f$ Order: the inclusion; stable. Lifting with: $(u, v) \in \operatorname{Rel}_{\mathcal{P}_f}^{\subseteq}(\leq) \Leftrightarrow \forall a \in u \exists b \in v \ . a \leq b$, where $u, v \in \mathcal{P}_f X$ and (X, \leq) is preordered.

• = • •

More examples

• $T = \mathcal{P}_f$ Order: the inclusion; stable. Lifting with: $(u, v) \in \operatorname{Rel}_{\mathcal{P}_f}^{\subseteq}(\leq) \Leftrightarrow \forall a \in u \exists b \in v \ . \ a \leq b$, where $u, v \in \mathcal{P}_f X$ and (X, \leq) is preordered.

• $TX = \mathbb{N} \times X$

Order: lexicographic; not stable, but preserves composition of preorders.

Lifting: $\hat{T}(X, \leq) = \mathbb{N} \ltimes X$ lexicographically ordered.

向下 イヨト イヨト

More examples

• $T = \mathcal{P}_f$ Order: the inclusion; stable. Lifting with: $(u, v) \in \operatorname{Rel}_{\mathcal{P}_f}^{\subseteq}(\leq) \Leftrightarrow \forall a \in u \exists b \in v \ . \ a \leq b$, where $u, v \in \mathcal{P}_f X$ and (X, \leq) is preordered.

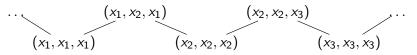
•
$$TX = \mathbb{N} \times X$$

Order: lexicographic; not stable, but preserves composition of preorders.

Lifting: $\hat{T}(X, \leq) = \mathbb{N} \ltimes X$ lexicographically ordered.

• $T = (-)_2^3$

Order: zig-zag



Order does not preserve composition of preorders, thus $\operatorname{Rel}_{\overline{T}}(\leq)$ is not necessarily a preorder, for (X, \leq) preordered set. No lifting using relators.

A. Balan (UPB), A. Kurz (UL)

 $\forall x \in X, y \in Y. f(x) = g(y) \Rightarrow \exists p \in P. x = \alpha(p) \land \beta(p) = y$

Preord: exact square-preserving functors Exact square: $P \xrightarrow{\alpha} X$ with $f \alpha \leq g \beta$, such that $\beta \downarrow \qquad \qquad \downarrow f$ $Y \xrightarrow{g} Z$ $\forall x \in X, y \in Y. f(x) \leq g(y) \Rightarrow \exists p \in P. x \leq \alpha(p) \land \beta(p) \leq y$

A. Balan (UPB), A. Kurz (UL)

CALCO 2011 19 / 27

Preord: exact square-preserving functors Exact square: $P \xrightarrow{\alpha} X$ with $f \alpha \leq g \beta$, such that $\beta \downarrow \qquad \qquad \downarrow f$ $Y \xrightarrow{g} Z$ $\forall x \in X, y \in Y. f(x) \leq g(y) \Rightarrow \exists p \in P. x \leq \alpha(p) \land \beta(p) \leq y$

Proposition

Let T be a finitary Set-functor having an order $\overline{T}(X, \leq) = (TX, \subseteq)$ which preserves composition of preorders. Then the following are equivalent:

- The order is stable.
- **②** The order maps weak pullbacks to exact squares.
- The lifting $\hat{T}(X, \leq) = (TX, \operatorname{Rel}_{T}^{\subseteq}(\leq))$ preserves exact squares.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Preord: exact square-preserving functors Exact square: $P \xrightarrow{\alpha} X$ with $f \alpha \leq g \beta$, such that $\beta \downarrow \qquad \qquad \downarrow f$ $Y \xrightarrow{g} Z$ $\forall x \in X, y \in Y. f(x) \leq g(y) \Rightarrow \exists p \in P. x \leq \alpha(p) \land \beta(p) \leq y$

Proposition

Let T be a finitary Set-functor having an order $\overline{T}(X, \leq) = (TX, \subseteq)$ which preserves composition of preorders. Then the following are equivalent:

- The order is stable.
- Interpreter of the second s
- The lifting $\hat{T}(X, \leq) = (TX, \operatorname{Rel}_{T}^{\subseteq}(\leq))$ preserves exact squares.

Consequence: if T is a finitary Set-functor, then T preserves weak pullbacks if and only if its preordification \tilde{T} preserves exact squares.

ヘロン 人間 とくほとく

< ∃ >

Theorem

Let T be a Set-functor (not necessarily finitary). There is a bijective correspondence between:

Liftings of T to Preord preserving exact squares.

→ Ξ →

CALCO 2011

Theorem

Let T be a Set-functor (not necessarily finitary). There is a bijective correspondence between:

• Liftings of T to Preord preserving exact squares.

2 Stable orders on T.

→ Ξ →

CALCO 2011

Theorem

Let T be a Set-functor (not necessarily finitary). There is a bijective correspondence between:

- Liftings of T to Preord preserving exact squares.
- 2 Stable orders on T.
- T-relators preserving inverse images.

CALCO 2011

Theorem

Let T be a Set-functor (not necessarily finitary). There is a bijective correspondence between:

- Liftings of T to Preord preserving exact squares.
- 2 Stable orders on T.
- **I**-relators preserving inverse images.

CALCO 2011

Theorem

Let T be a Set-functor (not necessarily finitary). There is a bijective correspondence between:

- Liftings of T to Preord preserving exact squares.
- 2 Stable orders on T.
- **I**-relators preserving inverse images.

CALCO 2011

Set-functors which preserve weak pullbacks also preserve all injectives.

 $\label{eq:linear} \begin{array}{l} \mbox{Injectives} = \mbox{strong monos in} \\ \mbox{Set.} \end{array}$

Set-functors which preserve weak pullbacks also preserve all injectives.

 $\label{eq:loss_loss} \begin{array}{l} \mbox{Injectives} = \mbox{strong monos in} \\ \mbox{Set.} \end{array}$

 $\label{eq:embeddings} {\sf Embeddings} = {\sf strong monos} \\ {\sf in \ Preord.} \end{cases}$

Set-functors which preserve weak pullbacks also preserve all injectives.

Preord-functors which preserve exact squares also preserve embeddings.

 $\label{eq:loss_loss} \begin{array}{l} \mbox{Injectives} = \mbox{strong monos in} \\ \mbox{Set.} \end{array}$

 $\label{eq:embeddings} {\sf Embeddings} = {\sf strong monos} \\ {\sf in Preord.} \\$

Set-functors which preserve weak pullbacks also preserve all injectives.

Preord-functors which preserve exact squares also preserve embeddings.

 $\label{eq:loss_loss} \begin{array}{l} \mbox{Injectives} = \mbox{strong monos in} \\ \mbox{Set.} \end{array}$

 $\label{eq:embeddings} {\sf Embeddings} = {\sf strong monos} \\ {\sf in \ Preord.} \\$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Corollary

Order on T is stable $\implies \hat{T}$ preserves embeddings.

Remark: Converse is false: take for example

$$TX = \{*\} + (X imes X - \Delta_X)/_{\sim}$$

Then T fails to preserve weak pullbacks, thus the discrete order on T is not stable, but \tilde{T} does preserve embeddings (notice that $\tilde{T}(X, \leq)$ is ordered component-wise with * as bottom element).

• Recall: for *T* finitary Set-functor and Γ a lifting of *T* to Preord, the final Γ-coalgebra exists and has the final *T*-coalgebra as underlying set.

- N

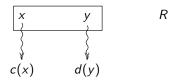
- Recall: for T finitary Set-functor and Γ a lifting of T to Preord, the final Γ-coalgebra exists and has the final T-coalgebra as underlying set.
- Now: take the lifting to be \hat{T} , for fixed stable order \bar{T} .

- Recall: for T finitary Set-functor and Γ a lifting of T to Preord, the final Γ-coalgebra exists and has the final T-coalgebra as underlying set.
- Now: take the lifting to be \hat{T} , for fixed stable order \bar{T} .
- [Rutten CMCS1998, Worrell 2000, Hughes-Jacobs 2004, Levy 2011] The preorder on the final \hat{T} -coalgebra is the similarity.

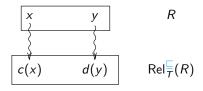
- Recall: for *T* finitary Set-functor and Γ a lifting of *T* to Preord, the final Γ-coalgebra exists and has the final *T*-coalgebra as underlying set.
- Now: take the lifting to be \hat{T} , for fixed stable order \bar{T} .
- [Rutten CMCS1998, Worrell 2000, Hughes-Jacobs 2004, Levy 2011] The preorder on the final \hat{T} -coalgebra is the similarity.
 - ▶ Recall: given an order $\overline{T}X = (TX, \sqsubseteq)$ and two *T*-coalgebras $X \xrightarrow{c} TX$, $Y \xrightarrow{d} TY$, a relation $R \subseteq X \times Y$ is called a *T*-simulation wrt order \overline{T} iff

$$\begin{array}{ccc} x & y \\ \vdots & \vdots \\ c(x) & d(y) \end{array}$$

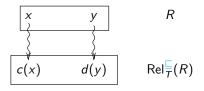
- Recall: for *T* finitary Set-functor and Γ a lifting of *T* to Preord, the final Γ-coalgebra exists and has the final *T*-coalgebra as underlying set.
- Now: take the lifting to be \hat{T} , for fixed stable order \bar{T} .
- [Rutten CMCS1998, Worrell 2000, Hughes-Jacobs 2004, Levy 2011] The preorder on the final \hat{T} -coalgebra is the similarity.
 - ▶ Recall: given an order $\overline{T}X = (TX, \sqsubseteq)$ and two *T*-coalgebras $X \xrightarrow{c} TX$, $Y \xrightarrow{d} TY$, a relation $R \subseteq X \times Y$ is called a *T*-simulation wrt order \overline{T} iff



- Recall: for *T* finitary Set-functor and Γ a lifting of *T* to Preord, the final Γ-coalgebra exists and has the final *T*-coalgebra as underlying set.
- Now: take the lifting to be \hat{T} , for fixed stable order \bar{T} .
- [Rutten CMCS1998, Worrell 2000, Hughes-Jacobs 2004, Levy 2011] The preorder on the final \hat{T} -coalgebra is the similarity.
 - ▶ Recall: given an order $\overline{T}X = (TX, \sqsubseteq)$ and two *T*-coalgebras $X \xrightarrow{c} TX$, $Y \xrightarrow{d} TY$, a relation $R \subseteq X \times Y$ is called a *T*-simulation wrt order \overline{T} iff



- Recall: for *T* finitary Set-functor and Γ a lifting of *T* to Preord, the final Γ-coalgebra exists and has the final *T*-coalgebra as underlying set.
- Now: take the lifting to be \hat{T} , for fixed stable order \bar{T} .
- [Rutten CMCS1998, Worrell 2000, Hughes-Jacobs 2004, Levy 2011] The preorder on the final \hat{T} -coalgebra is the similarity.
 - ▶ Recall: given an order $\overline{T}X = (TX, \sqsubseteq)$ and two *T*-coalgebras $X \xrightarrow{c} TX$, $Y \xrightarrow{d} TY$, a relation $R \subseteq X \times Y$ is called a *T*-simulation wrt order \overline{T} iff



• Similarity: greatest simulation. Similarity on a *T*-coalgebra $X \to TX$ is a preorder.

A. Balan (UPB), A. Kurz (UL)

CALCO 2011 22 / 27

Outline

Extensions and liftings

Prom Set-functors to Preord-functors

- Order on variables
- Order on operations
- Order both variables and operations
- 3 Finally, from Preord to Poset

4 Further work

< E.

Third construction: order both variables and operations *T* finitary Set-functor

$$\coprod_{m,n<\omega}\operatorname{Set}(\underline{m},\underline{n})\times T\underline{m}\times X^n \stackrel{\scriptstyle{\scriptstyle{\rightarrow}}}{\Rightarrow} \coprod_{n<\omega} T\underline{n}\times X^n \stackrel{\scriptstyle{\scriptstyle{\rightarrow}}}{\Rightarrow} TX$$

CALCO 2011

Third construction: order both variables and operations

T finitary Set-functor (X, \leq) preordered set

$\coprod_{m,n<\omega} \operatorname{Set}(\underline{m},\underline{n}) \times T\underline{m} \times (X^n, \leq) \stackrel{\scriptstyle{>}}{\Rightarrow} \coprod_{n<\omega} T\underline{n} \times (X^n, \leq) \stackrel{\scriptstyle{>}}{\Rightarrow} (TX, \leq)$

•

A. Balan (UPB), A. Kurz (UL)

Finitary functors: from Set to Preord

CALCO 2011 24 / 27

白 と く ヨ と く ヨ と

Third construction: order both variables and operationsT finitary Set-functorPreorder on signature $(Tn, \Box)_{n < \omega}$

$\coprod_{m,n<\omega} \operatorname{Set}(\underline{m},\underline{n}) \times (T\underline{m},\sqsubseteq) \times X^n \stackrel{\scriptstyle{>}}{\Rightarrow} \coprod_{n<\omega} (T\underline{n},\sqsubseteq) \times X^n \stackrel{\scriptstyle{>}}{\Rightarrow} (TX,\sqsubseteq)$

•

A. Balan (UPB), A. Kurz (UL)

Finitary functors: from Set to Preord

CALCO 2011

Third construction: order both variables and operationsT finitary Set-functor (X, \leq) preordered setPreorder on signature $(T\underline{n}, \sqsubseteq)_{n < \omega}$

 $\coprod_{m,n<\omega}\operatorname{Set}(\underline{m},\underline{n})\times(T\underline{m},\underline{\sqsubset})\times(X^n,\leq) \stackrel{>}{\Rightarrow} \coprod_{n<\omega}(T\underline{n},\underline{\sqsubset})\times(X^n,\leq) \stackrel{>}{\Rightarrow} (TX,\underline{\prec})$

Obtain *T*-lifting $\check{T}(X, \leq) = (TX, \preceq)$

CALCO 2011

Third construction: order both variables and operationsT finitary Set-functor (X, \leq) preordered setPreorder on signature $(T\underline{n}, \sqsubseteq)_{n < \omega}$

 $\coprod_{m,n<\omega}\mathsf{Set}(\underline{m},\underline{n})\times(T\underline{m},\underline{\sqsubset})\times(X^n,\leq) \stackrel{\scriptstyle{>}}{\Rightarrow} \coprod_{n<\omega}(T\underline{n},\underline{\sqsubset})\times(X^n,\leq) \stackrel{\scriptstyle{>}}{\Rightarrow} (TX,\preceq)$

Obtain *T*-lifting $\check{T}(X, \leq) = (TX, \preceq)$

Proposition

If T preserves weak pullbacks and \overline{T} preserves composition of preorders, then $\underline{\check{T}} = \hat{T}$.

Relator Lifting

Remark: still a *T*-lifting independently of the properties of the order \overline{T} .

・ロト ・回ト ・ヨト ・ヨト … ヨ

Outline

Extensions and liftings

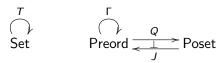
2 From Set-functors to Preord-functors

- Order on variables
- Order on operations
- Order both variables and operations

③ Finally, from Preord to Poset

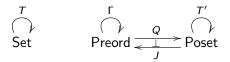
4 Further work

< E.



3

э

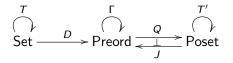


Define $T' = Q\Gamma J$ locally monotone, finitary.

A. Balan (UPB), A. Kurz (UL)

Finitary functors: from Set to Preord

CALCO 2011 26 / 27



Define $T' = Q\Gamma J$ locally monotone, finitary.

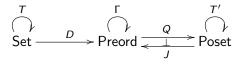
CALCO 2011

26 / 27

• Γ extension of T to Preord \Rightarrow T' extension of T to Poset.

A. Balan (UPB), A. Kurz (UL)

Finitary functors: from Set to Preord



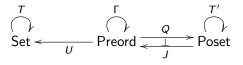
Define $T' = Q\Gamma J$ locally monotone, finitary.

CALCO 2011

26 / 27

 $\operatorname{Coalg}(T) \xrightarrow{} \operatorname{Coalg}(\Gamma) \longrightarrow \operatorname{Coalg}(T')$

• Γ extension of T to Preord $\Rightarrow T'$ extension of T to Poset. Final T'-coalgebra exists and is discrete.



Define $T' = Q\Gamma J$ locally monotone, finitary.

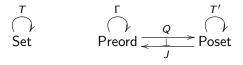
向下 イヨト イヨト

CALCO 2011

26 / 27

 $\operatorname{Coalg}(T) \xrightarrow{} \operatorname{Coalg}(\Gamma) \longrightarrow \operatorname{Coalg}(T')$

- Γ extension of T to Preord $\Rightarrow T'$ extension of T to Poset. Final T'-coalgebra exists and is discrete.
- Example: for $T = \mathcal{P}_f$ and $\Gamma = \tilde{P}_f$, we obtain that \mathcal{P}'_f is the finitely generated convex powerset functor



Define $T' = Q\Gamma J$ locally monotone, finitary.

CALCO 2011

26 / 27

 $\operatorname{Coalg}(T) \xrightarrow{} \operatorname{Coalg}(\Gamma) \longrightarrow \operatorname{Coalg}(T')$

- Γ lifting of T, then T' is not necessarily a lifting, just a quotient.
- However, if we have an order preserving composition of preorders and satisfying $\operatorname{Rel}_{\overline{T}}^{\subseteq}(R_1) \cap \operatorname{Rel}_{\overline{T}}^{\subseteq^{op}}(R_2) \subseteq \operatorname{Rel}_{T}(R_1 \cap R_2)$ then the lifting \hat{T} restricts to posets.

Further work

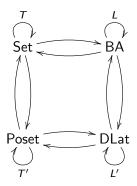
Investigate coalgebraic logic over Poset and merge it with Set-based functors' logic into a big picture.

3

____ - ∢ ≣ ▶

Further work

Investigate coalgebraic logic over Poset and merge it with Set-based functors' logic into a big picture.



Further work

Investigate coalgebraic logic over Poset and merge it with Set-based functors' logic into a big picture.

